Elementary Numbah Theory

Doctorjay

May 2017

1 Axioms

Axiom 1. $1 \in \mathbb{N}$

Axiom 2. $\forall x \in \mathbb{N}, \exists x', \text{ called the successor of } x$

Axiom 3. 1 is not the successor of any natural number

Axiom 4. $x' = y' \Rightarrow x = y$

Axiom 5. : Induction Axiom Let $S \subseteq \mathbb{N}$ such that • (1) $1 \in S$ • (2) $x \in S \Rightarrow x' \in S$

Then $S = \mathbb{N}$

Axiom 6. : Well-Ordering Axiom $\forall (S \subseteq \mathbb{N} \land S \neq \emptyset), S \text{ contains a least element.}$ That is, $\forall (b \in S), (\exists a \in S) : a \leq b$

2 Postulates on \mathbb{Z}

Postulate 1. Reflexivity of Equality $a \in \mathbb{Z} \Rightarrow a = a$

Postulate 2. Symmetry of Equality $a, b \in \mathbb{Z} \land a = b \Rightarrow b = a$

Postulate 3. Transitivity of Equality $a, b, c \in \mathbb{Z} \land a = b \land b = c \Rightarrow a = c$

Postulate 4. Transitivity of Inequality $a, b, c \in \mathbb{Z} \land a < b \land b < c \Rightarrow a < c$

Postulate 5. Trichotomy $a, b \in \mathbb{Z} \Rightarrow$ Exactly one of the following is true: (1) a < b, (2) a = b or (3) a > b

Postulate 6. Binary operations

Multiplication Addition . $(ab) \in \mathbb{Z}$ Closure $(a+b) \in \mathbb{Z}$ Equality $a = b \Rightarrow a + c = b + c$ $a = b \Rightarrow a \cdot c = b \cdot c$ Associativity (a+b) + c = a + (b+c) (ab)c = a(bc)Identity a + 0 = 0 + a = a $a \cdot 1 = 1 \cdot a = a$ Commutativity a+b=b+a $a \cdot b = b \cdot a$ Inverse a + (-a) = 0 $\{1, -1\}$ Transitivity of Inequality $a < b \Leftrightarrow a + c < b + c$ $a < b \Leftrightarrow a \cdot |c| < b \cdot |c|$ $a \cdot (b+c) = ab + ac$ Distributivity

 \mathbb{Z}^+ is an abelian group and an infinite cyclic group

 \mathbb{Z}^* is a commutative monoid

3 Divisibility

Definition 3.1. Let $a, b \in \mathbb{Z}$ $\exists (k \in \mathbb{Z}) : b = ak \Rightarrow a \mid b$ $\coloneqq a$ divides b $\coloneqq a$ is a divisor of b

Properties.

Property 3.1. 0 is not a divisor of any integer except 0, since $\neg \exists k \neq 0$: $0 \cdot k \neq 0$

Property 3.2. $a \mid 0$ since $0 = 0 \cdot a$

Property 3.3. $1 \mid a \text{ since } a = 1 \cdot a$

Property 3.4. $a \mid a$ since $a = a \cdot 1$

Property 3.5. $a \mid b \land b \neq 0 \Rightarrow |a| \leq |b|$

P	Proof		
1.	$b = ak$ for some $k \in \mathbb{Z}$	(Definition 3.1)	
2.	$k \neq 0$ since $b \neq 0$	(Premise)	
3.	$ k \ge 1$	(2)	
4.	$ b = ak = a \cdot k \geq a \cdot 1$	(3, Trans. Ineq.)	

Property 3.6. Closure under multiplication $d \mid a \Rightarrow d \mid ab$

Proof1dk = a2 $dk \cdot b = a \cdot b$ 2 $d \cdot (kb) = a \cdot b$ 4 $d \mid ab$ 4 $d \mid ab$ Converse is not necessarily true.

Property 3.7. Transitivity $a \mid b \land b \mid c \Rightarrow a \mid c$

	Proof		
1	ak = b for some k	(Definition 3.1)	
2	$b = ak \mid c$	(Premise)	
3	akk' = c for some k'	(Definition 3.1)	
4	a(kk') = c	(Assoc. Mult.)	
5	$a \mid c$	(Definition 3.1)	

Property 3.8. Equality

 $a \mid b \Leftrightarrow a \cdot c \mid b \cdot c$

 $\begin{array}{l} a \mid b \Rightarrow ak = b \Rightarrow (ac)k = bc \Rightarrow ac \mid bc \\ ac \mid bc \Rightarrow ack = bc \Rightarrow ak = b \Rightarrow a \mid b \end{array}$

Property 3.9. $a \mid b \land b \mid a \Rightarrow |a| = |b|$

Proof

 $\begin{array}{l} a \mid b, \text{ so } ak = b \text{ for some } k \in \mathbb{Z} \\ b \mid a, \text{ so } bk' = a \text{ for some } k' \in \mathbb{Z} \\ akk' = a \Leftrightarrow (k, -k) \in \{(1, -1), (-1, 1)\} \end{array}$

4 Common Divisor

Definition 4.1. Let $d \mid a$ and $d \mid b, d \in \mathbb{Z}$:= d is a **common divisor** of a and b

Definition 4.2. A linear combination of $a, b \in \mathbb{Z}$ is any integer of the form $ra + sb, r, s \in \mathbb{Z}$

Theorem 4.1. Linear Combination Let $(a, b, d, r, s) \in \mathbb{Z}$. Then $d \mid a \land d \mid b \Rightarrow d \mid (ra + sb)$

Proof $d \mid a$ Premise $d \mid b$ Premise $(1) \quad \exists (e \in \mathbb{Z}) : a = d \cdot e$ (Definition 3.1) $(2) \quad \exists (f \in \mathbb{Z}) : b = d \cdot f$ (Definition 3.1) $(3) \quad ra + sb = rde + sdf = d(re + sf)$ (1, 2) $(4) \quad d \mid (ra + sb)$ (3), Definition 3.1Note that the converse is not necessarily true.

Corollary 4.1.1. $d \mid a \land d \mid b \Rightarrow d \mid (a+b)$ Set r = 1, s = 1

Corollary 4.1.2. $d \mid a \land d \mid b \Rightarrow d \mid (a - b)$ Set r = 1, s = -1 Corollary 4.1.3. $d \mid a \Rightarrow d \mid ra$ Set r = 1, s = 0. Also, see (3.6)

Lemma 4.2. For a, b not both 0, there is a least positive linear combination of a and b.

Proof. WLOG, assume $a \neq 0$. Let $S = \{x : x = (r_0 a + s_0 b) \ \forall (r_0, s_0 \in \mathbb{Z}) \}$. Then $a \in S$ for a > 0, $r_0 = 1$ and $-a \in S$ for a < 0, $r_0 = 1$. Therefore, $S \neq \emptyset$.

Lemma 4.3. For a, b not both 0, the least positive linear combination of a and b is a common divisor of a and b.

Proof

FTOOJ		
(1)	Let d be the least positive linear combination of a and b	(Lemma 4.2)
(2)	Write $a = qd + r, \ 0 \le r < d$	(Division Algorithm)
(3)	$r = a - qd = a - q(r_0a + s_0b) = (1 - qr_0)a + (-qs_0)b$	(2)
(4)	r is also a linear combination of a and b and $r \geq 0$	(2,3)
(5)	If $r > 0$ then (1) is contradicted. Therefore, $r = 0$	(1, 4)
(6)	$a = qd + 0$, Hence $a = qd$ and $d \mid a$	(2)
(7)	Repeat (2) - (6) with b to complete the proof	

$\mathbf{5}$ Greatest Common Divisor

Definition 5.1. For a, b not both 0, there is a greatest common divisor of a and b

Proof. WLOG, assume $a \neq 0$. Let $S = \{x : x \mid a \land x \mid b\}$. Then: Existence $1 \in S \Rightarrow S \neq \emptyset$ (Property 3.3) Upper bound $x \in S \Rightarrow x \mid a \Rightarrow x \leq |a|$ (Property 3.5)

Properties.

Property 5.1. For a, b not both 0, $gcd(a, b) \ge 1$ since $1 \in S$

Property 5.2. gcd(a, 0) = a since $a \mid 0$ and $a \mid a$

Property 5.3. $c \mid a \land c \mid b \Rightarrow c \mid qcd(a, b)$. This follows directly from Theorem 4.1.

Property 5.4. $gcd(ac, bc) = c \cdot gcd(a, b)$

Proof Let d = gcd(a, b)Let d' = gcd(ac, bc)(1) Then $d \mid a \land d \mid b$ from Definition 4.1 (2) And $dc \mid ac \wedge dc \mid bc$ from Property 3.8 (3) So $dc \mid d'$ from Property 5.3 (4) d = ra + sb for some r and s from (1) (5) Then dc = rac + sbc (Multiplicative Equality) (6) $d' \mid ac \wedge d' \mid bc$ by Definition 5.1

(7) $d' \mid (rac + sbc) \Rightarrow d' \mid dc$ from Theorem 4.1, (5)

(8) From (3), $dc \leq d'$, and from (7), $d' \geq dc$

(9) Therefore $d' = dc \square$

Theorem 5.1. Bezout's Identity

gcd(a, b) is the least positive linear combination of a and b

Proof

Let *d* be the least positive linear combination of *a* and *b*. Then *d* | *a* and *d* | *b* from Lemma 4.3 Let *c* | *a* and *c* | *b* for some $c \in \mathbb{Z}$ Since *d* is a linear combination of *a* and *b*, *c* | *d* And $c \leq d$ from Property 3.5 All common divisors *c*, of (*a*, *b*) are $\leq d \Rightarrow gcd(a, b) = d$

Corollary 5.1.1. $c \mid gcd(a, b) \Leftrightarrow c \mid a \land c \mid b$

 $Proof \leftarrow$ is restatement of Property 5.3

 $\begin{array}{l} Proof \Rightarrow \\ c \mid gcd(a,b) \text{ by Premise} \\ gcd(a,b) \mid a \text{ by Definition 5.1} \\ c \mid a \text{ by Property 3.7} \\ c \mid b \text{ can be shown by analogous derivation. } \end{array}$

Corollary 5.1.2. $\forall k \in \mathbb{Z}, \exists (r, s) \in \mathbb{Z} : k \cdot gcd(a, b) = ra + sb$ All multiples of gcd(a, b) are a linear combination of a and b

 $\begin{array}{ll} Proof\\ gcd(a,b) = r_0 a + s_0 b & \text{Theorem 5.1}\\ k \cdot gcd(a,b) = (r_0 k)a + (s_0 k)b & \Box \end{array}$

Corollary 5.1.3. $\forall (a, b, r, s \in \mathbb{Z}) : gcd(a, b) \mid (ra + sb)$ All linear combinations of a and b are a multiple of gcd(a, b)

 $\begin{array}{ll} Proof\\ \text{Let }g=gcd(a,b)\\ \text{Let }(r,\,s)\in\mathbb{Z} \text{ be arbitrary integers}\\ k\cdot g=a & \text{Definition 5.1}\\ k'\cdot g=b & \text{Definition 5.1}\\ ra+sb=rkg+sk'g=(rk+sk')g & \text{Substituting}\\ g\mid (ra+sb) & \Box \end{array}$

Corollary 5.1.4. $gcd(ac, bc) = c \cdot gcd(a, b)$

Proof

	Let $d = gcd(a, b)$	
1	$d \mid a \wedge d \mid b$	Definition 4.1
2	$dc \mid ac \wedge dc \mid bc$	Property 3.8
	Let $d' = gcd(ac, bc)$	
3	Then $dc \mid d'$	(2), Property 5.3
4	$d = r_0 a + s_0 b$	Theorem 5.1
5	$dc = r_0 ac + s_0 bc$, which is a linear combination of ac, bc	
6	$d' \mid dc$	(5), Corollary 5.1.3
7	d' = dc	$(3), (6) \square$

Corollary 5.1.5. $gcd(a, bc) \mid (gcd(a, b) \cdot gcd(a, c))$

 $\begin{array}{ll} Proof \\ \text{Let } gcd(a,b) = r_0a + s_0b & \text{Theorem 5.1} \\ \text{Let } gcd(a,c) = r_1a + s_1c & \text{Theorem 5.1} \\ \text{Then } (gcd(a,b) \cdot gcd(a,c) = r_0ar_1a + r_0as_1c + s_0br_1a + s_0bs_1c \\ = (r_0r_1a + r_0s_1c + s_0s_1b)a + (s_0s_1)bc & \text{which is a linear combination of } a, bc \\ \text{And which } gcd(a,bc) \text{ is thus a divisor of by Corollary 5.1.3} & \Box \end{array}$

Corollary 5.1.6. gcd(a + bc) = gcd(a, b) for any $c \in \mathbb{Z}$

Proof			
	Let $d = gcd(a, b)$ and $d' = gcd(a + bc, b)$		
1	d' = r(a+bc) + sb = ra + (rc+s)b	Definition 4.1	
2	$d \mid a \wedge d \mid b$	Definition 4.1	
3	$d \mid d'$	(2), Theorem 4.1	
4	$d' \mid b \Rightarrow d' \mid bc$	Property 3.6	
5	$d' \mid (a + bc) \land d' \mid bc \Rightarrow d' \mid (a + bc - bc) \Rightarrow d' \mid a$	Corollary 4.1.2	
6	$d' \mid a \wedge d' \mid b \Rightarrow d' \mid d$	Property 5.3	
7	$d \mid d' \wedge d' \mid d \Rightarrow d = d'$	$(3), (6) \square$	

Lemma 5.2.

For a, b not both 0, write a = bq + r. Then gcd(a, b) = gcd(b, r)

 $\begin{array}{l} Proof\\ \text{Let } d = gcd(a,b)\\ \text{Let } d' = gcd(b,r)\\ 1 \quad d = sa + tb = s(bq+r) + tb = (sq+t)b + sr \text{ for some } s,t \in \mathbb{Z}\\ 2 \quad \text{Then } d' \mid d\\ 3 \quad d' = s'b + t'r = s'b + t'(a - bq) = t'a + (s - qt')b \text{ for some } s',t' \in \mathbb{Z}\\ 4 \quad \text{Then } d \mid d'\\ \text{From } (2) \text{ and } (4), d = d' \end{array}$

6 Euclidean GCD Algorithm

Consider the following sequence of divisions:

 $a = bq_0 + r_0$ $0 \le r_0 < b$ $gcd(a,b) = gcd(b,r_0)$ $\begin{array}{ll} 0 \leq r_1 < r_0 & gcd(b.r_0) = gcd(r_0, r_1) \\ 0 \leq r_2 < r_1 & gcd(r_0, r_1) = gcd(r_1, r_2) \\ 0 \leq r_3 < r_2 & gcd(r_1, r_2) = gcd(r_2, r_3) \end{array}$ $b = q_1 r_0 + r_1$ $r_0 = q_2 r_1 + r_2$ $r_1 = q_3 r_2 + r_3$ ••• ... ••• ... $r_{n-2} = q_n r_{n-1} + r_n \quad 0 \leq r_n \leq r_{n-1} \quad \gcd(r_{n-2}, r_{n-1}) = \gcd(r_{n-1}, r_n)$ $gcd(r_{n-1}, r_n) = gcd(r_n, 0) = r_n$ $r_{n-1} = q_{n+1}r_n + 0$ Note that the sequence $r_0, r_1, r_2...r_n$ is strictly decreasing.

Therefore, it will eventually yield 0.

Let r_n be the last non-zero remainder. Now:

 $r_n \mid r_{n-1}$ from the last term

So $r_n \mid r_{n-2}$ from the term above

Proceeding similarly, $r_n \mid b$ and $r_n \mid a$, so r_n is a common divisor of a and bLet d be an arbitrary common divisor of a, b. Then:

 $\begin{array}{l} d \mid (a - bq_0) \Rightarrow d \mid r_0 \\ d \mid (b - q_1 r_0) \Rightarrow d \mid r_1 \\ d \mid (r_0 - q_2 r_1) \Rightarrow d \mid r_2 \\ \dots \end{array}$

 $d \mid (r_{n-2} - q_n r_{n-1}) \Rightarrow d \mid r_n$

Since an arbitrary common divisor of (a, b) divides r_n , $r_n = gcd(a, b)$ (Property 5.3)

 $r_n = gcd(a, b)$ can also be observed by noting the sequence in the right hand column, which follows from Lemma 5.2.

7 Coprimality

Definition 7.1. Let gcd(a, b) = 1:= a and b are **coprime** := a and b are **relatively prime** := 1 is the only common divisor of a and b

Property 7.1. $gcd(a,b) = 1 \Leftrightarrow ra + sb = 1$ for some $r, s \in \mathbb{Z}$ This follows directly from Theorem 5.1

Proposition 7.1. $\frac{a}{qcd(a,b)}$ and $\frac{b}{qcd(a,b)}$ are coprime

Proof

Let d = gcd(a, b)

- 1 $d \mid a \Rightarrow dk = a$ for some $k \in \mathbb{Z}$
- 2 $d \mid b \Rightarrow dk' = b$ for some $k' \in \mathbb{Z}$
- 3 $\frac{a}{d} = k, \ \frac{b}{d} = k'$

5

- 4 Suppose k and k' have a common divisor, d'
 - Then $k = d'm, \ k' = d'm'$ for some $m, m' \in \mathbb{Z}$
- 6 So a = dd'm and b = dd'm', which means dd' is a common divisor of a, b

(1), (2)

(4)

- 7 But d is the greatest common divisor of a, b, so d' = 1
- 8 $d' = 1, \Rightarrow k, k'$ are relatively prime

Theorem 7.1. Generalized Euclid's Lemma

 $a \mid bc \wedge gcd(a,b) = 1 \Rightarrow a \mid c$

ProofDefinition 3.11ak = bc for some $k \in \mathbb{Z}$ Definition 3.121 = ra + sb for some $r, s \in \mathbb{Z}$ Property 7.13c = rac + sbc = rac + sak = a(rc + sk)(1), (2)4 $a \mid c$ (3) \Box

Corollary 7.1.1. Euclid's Lemma For any prime, $p, p \mid bc \Rightarrow p \mid b \lor p \mid c$

Proof WLOG, assume $p \nmid b$ Then gcd(p,b) = 1 = rp + sb for some $r, s \in \mathbb{Z}$ Multiplying by c, c = (rc)p + (s)bcSince $p \mid (rc)p \land p \mid (s)bc, p \mid c$ The derivation for $p \mid b$ is analogous

8 Linear Diophantine Equation

Definition 8.1.

A Linear Diophantine Equation in 2 variables is an equation of the form ax + by = c

Property 8.1. ax + by = c is solvable $\Leftrightarrow gcd(a, b) \mid c$

ProofLet ax + by = c have a solutionPremiseThen $gcd(a, b) \mid c$ Corollary 5.1.3

Theorem 8.1. If (x_0, y_0) is a solution of ax + by = c, then all solutions are given by $\left(x_0 + \frac{b}{gcd(a,b)}k, y_0 - \frac{a}{gcd(a,b)}k\right)$

 $Proof \Rightarrow$

Let d = gcd(a, b)c = dkProperty 8.1 d = ra + sb for some $r, s \in \mathbb{Z}$ Theorem 5.1 c = a(rk) + b(sk)So this equation has the solution $(x_0 = rk, y_0 = sk)$ Substituting for arbitrary x, y: $ax + by = a\left(x_0 + \frac{b}{d}k\right) + b\left(y_0 - \frac{a}{d}k\right)$ $= (ax_0 + by_0) + \frac{abk}{d} - \frac{abk}{d} = (ax_0 + by_0)$ $Proof \Leftarrow$ Let x_0, y_0 and (x_1, y_1) be solutions of ax + by = cThen $c = ax_0 + by_0 = ax_1 + by_1$ $a(x_1 - x_0) = b(y_0 - y_1)$ $a(x_1 - x_0) = b(y_0 - y_1)$ $\frac{a}{d}(x_1 - x_0) = \frac{b}{d}(y_0 - y_1)$ $gcd(\frac{a}{d}, \frac{b}{d}) = 1$ Since $\frac{b}{d} \nmid \frac{a}{d}, \frac{b}{d} \mid (x_1 - x_0)$ Hence, $x_1 - x_0 = \frac{b}{d}k$ for some $k \in \mathbb{Z}$ And $x_1 = x_0 + \frac{b}{d}k$ $a\frac{b}{d}k = b(y_0 - y_1)$ $\frac{a}{d}k = (y_0 - y_1)$ $y_1 = y_0 - \frac{a}{d}k$ Proposition 7.1

Corollary 8.1.1. For gcd(a, b) = 1, all solutions of ax + by = 1 are given by $(x_0 + bk, y_0 - ak) \quad \forall k \in \mathbb{Z}$, where (x_0, y_0) is one solution.

Substitute 1 for d in Proof above.

9 Congruence

Definition 9.1. If $m \mid (a - b)$:

 $\coloneqq a \equiv b \! \mod m$

 $\coloneqq a \text{ is congruent to } b \mod m$

:= a and b are in the same congruence class