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1 Axioms

Axiom 1. 1 e N

Axiom 2. Vz € N, 32/, called the successor of =
Axiom 3. 1 is not the successor of any natural number
Axiom 4. o' =y =z =y

Axiom 5. : Induction Axiom
Let S C N such that

. (H1es
o 2)zeS=2"€S
Then S =N

Axiom 6. : Well-Ordering Axiom
V(S CN A S#0), S contains a least element.
That is, V(b € S), (Fa € S) :a <D

2 Postulates on Z

Postulate 1. Reflexivity of Equality
a€lZ=a=a

Postulate 2. Symmetry of Equality
a,beZNa=b=b=a

Postulate 3. Transitivity of Equality
a,bcecZNa=bNb=c=>a=c

Postulate 4. Transitivity of Inequality
a,bceZNa<bNhNb<c=a<c

Postulate 5. Trichotomy
a,b € 7 = Exactly one of the following is true: (1) a <b, (2)a=bor (3)a >b



Postulate 6. Binary operations
- Addition Multiplication
Closure (a+b)€Z (ab) € Z
Equality a=b=a+c=b+c a=b=a-c=b-c
Associativity (a+b)+c=a+ (b+c¢) (ab)c=a(be)

Identity a+0=04+a=a a-l=1-a=a
Commutativity a+b=0b+a a-b=b-a
Inverse a4+ (—a)=0 {1,-1}
Transitivity of Inequality a<b<a+c<b+c a<bea-|d <b-|c
Distributivity a-(b+c¢)=ab+ac

77 is an abelian group and an infinite cyclic group
Z* is a commutative monoid

3 Divisibility

Definition 3.1. Let a,b € Z
IkeZ):b=ak=alb

:= a divides b

‘= a is a divisor of b

Properties.

Property 3.1. 0is not a divisor of any integer except 0, since -3k £ 0: 0-k # 0
Property 3.2. a|0since0=0-a

Property 3.3. 1 |asincea=1"-a

Property 3.4. a|asincea=a-1

Property 3.5. a |bAb# 0= |a| <D

Proof
1. b=ak for some k € Z (Definition 3.1)
2. k#0sinceb#0 (Premise)
3. |k >1 (2)
4. b = |ak| =la|-|k] > ]a|-1 (3, Trans. Ineq.) O

Property 3.6. Closure under multiplication

d|a=d|ab
Proof
1 dk=a (Definition 3.1)
2 dk-b=a-b (Trans. Mult.)
2 d-(kb)=a-b (Assoc. Mult.)
4 dfab (Definition 3.1) O

Converse is not necessarily true.



Property 3.7. Transitivity
a|lbAblc=alc

Proof
1 ak =10 for some k (Definition 3.1)
2 b=dak|c (Premise)
3 akk’ = cfor some &/ (Definition 3.1)
4 alkk)=c (Assoc. Mult.)
5 alc (Definition 3.1) O

Property 3.8. Equality
albsa-c|b-c

a|b=ak=0b= (ac)k =bc= ac|bc
ac | bc = ack =bc=ak=b=alb
Property 3.9. a|bAb|a = |a| = |b|

Proof
a| b, so ak =b for some k € Z
b|a,so bk’ =a for some k' € Z
akk' =a < (k,—k) € {(1,-1),(-1,1)}

4 Common Divisor

Definition 4.1. Let d |a and d | b, d € Z

= d is a common divisor of ¢ and b

Definition 4.2. A linear combination of a, b € Z is any integer of the form
ra+sb, r,s€Z

Theorem 4.1. Linear Combination
Let (a,b,d,r,8) € Z. Thend|a A d|b=d| (ra+ sb)

Proof
d|a Premise
d|b Premise
(1) Fe€Z):a=d-e (Definition 3.1)
(2) I(feZ):b=d-f (Definition 3.1)
(3) ra+sb=rde+sdf =d(re+sf) (1,2)
(4) d|(ra+ sb) (3), Definition 3.1 O

Note that the converse is not necessarily true.

Corollary 4.1.1. d|aAd|b=d]| (a+1D)
Set r=1,s=1

Corollary 4.1.2. d|aAd|b=d]| (a—10)
Set r=1,s = -1



Corollary 4.1.3. d|a=d|ra
Set r =1,s =0. Also, see (3.6)

Lemma 4.2. For a,b not both 0, there is a least positive linear combination of
a and b.

Proof. WLOG, assume a # 0. Let S = {x : z = (roa + sob) V(10,50 € Z)}.
Then a € S fora > 0, 1o = 1 and —a € S for a < 0, 79 = 1. Therefore,
S £ 0. [ ]

Lemma 4.3. For a,b not both 0, the least positive linear combination of a and
b is a common divisor of a and b.

Proof
(1) Let d be the least positive linear combination of a and b  (Lemma 4.2)
(2) Writea=gqd+r, 0<r<d (Division Algorithm)
(3) r=a—qd=a—q(roa+ seb) = (1 —gqro)a+ (—gso)b (2)
(4) ris also a linear combination of a and b and r > 0 (2,3)
(5) Ifr > 0 then (1) is contradicted. Therefore, r =0 (1, 4)
(6) a=qd+0,Hence a=¢qgdand d|a (2)
(7)  Repeat (2)-(6) with b to complete the proof O

5 Greatest Common Divisor

Definition 5.1. For a,b not both 0, there is a greatest common divisor of
a and b

Proof. WLOG, assume a # 0. Let S ={z:2 | a Az |b}. Then:
Existence 1€ S =S5#0 (Property 3.3)
Upper bound z€S=z|a=z<la] (Property3.5)

Properties.
Property 5.1. For a,b not both 0, ged(a,b) > 1 since 1 € S
Property 5.2. gecd(a,0) =a since a |0 and a | a

Property 5.3. ¢|aAc|b= c]|gcd(a,b).
This follows directly from Theorem 4.1.

Property 5.4. ged(ac,be) = ¢ - ged(a,b)

Proof
Let d = gcd(a, b)
Let d' = ged(ac, be)
(1) Then d | a A d | b from Definition 4.1
And dc | ac Adc | be from Property 3.8
So de | d' from Property 5.3
d = ra + sb for some r and s from (1)
Then de¢ = rac + sbe (Multiplicative Equality)

(2)
(3)
(4)
()



(6) d' | ac A d’ | be by Definition 5.1

(7) d'| (rac+ sbc) = d' | dc from Theorem 4.1, (5)
(8) From (3), de < d’, and from (7), d’ > dc

(9) Therefore d’' = dc O

Theorem 5.1. Bezout’s Identity
gcd(a,b) is the least positive linear combination of a and b

Proof
Let d be the least positive linear combination of a and b.
Then d | a and d | b from Lemma 4.3
Let ¢ | a and ¢ | b for some c € Z
Since d is a linear combination of ¢ and b, ¢ | d
And ¢ < d from Property 3.5
All common divisors ¢, of (a, b) are < d = ged(a, b) =d O

Corollary 5.1.1. ¢ | gcd(a,b) < claic|b

Proof <= is restatement of Property 5.3

Proof =
¢ | ged(a,b) by Premise
gcd(a,b) | a by Definition 5.1
¢ | a by Property 3.7
¢ | b can be shown by analogous derivation. O

Corollary 5.1.2. Vk € Z, 3 (r,s) € Z: k - gcd(a,b) = ra + sb
All multiples of ged(a,b) are a linear combination of a and b

Proof
ged(a,b) = roa + sob Theorem 5.1
k- gcd(a,b) = (rok)a + (sok)b O

Corollary 5.1.3. Y(a,b,r,s € Z) : ged(a,b) | (ra + sb)
All linear combinations of a and b are a multiple of ged(a, b)

Proof
Let g = gcd(a,b)
Let (7, s) € Z be arbitrary integers

k-g=a Definition 5.1
E-g=5b Definition 5.1
ra+ sb=rkg+ sk’g = (rk + sk’)g  Substituting
g | (ra+ sb) O

Corollary 5.1.4. gcd(ac,bc) = ¢ - ged(a,b)
Proof



Let d = gcd(a, b)

1 dland]|b Definition 4.1
2 dc|acAde|be Property 3.8
Let d' = ged(ac, be)
3 Thendc|d (2), Property 5.3
4 d=roa+ sob Theorem 5.1
5 dc = roac+ sgbc, which is a linear combination of ac, be
6 d|de (5), Corollary 5.1.3
7 d =dec (3), (6) O

Corollary 5.1.5. gcd(a,be) | (ged(a,b) - ged(a, c))

Proof
Let ged(a,b) = roa + sob Theorem 5.1
Let ged(a,c) =ria+ sic Theorem 5.1

Then (ged(a,b) - ged(a, c) = roaria + roasic + sobria + sobsic

= (roria + rosic + sos1b)a + (s¢s1)bc

which is a linear combination of a, bc

And which ged(a, be) is thus a divisor of by Corollary 5.1.3 O

Corollary 5.1.6. gcd(a + be) = ged(a,b) for any ¢ € Z

Proof
Let d = ged(a,b) and d' = ged(a + be, b)

1 d=r(a+bc)+sb=ra+ (rc+s)b Definition 4.1
2 dland]|b Definition 4.1
3 d|d (2), Theorem 4.1
4 d|b=d|be Property 3.6
5 d|(a+be)Ad |be=d | (a+bc—bec)=d |a Corollary 4.1.2
6 d|and |b=4d|d Property 5.3
7 d|dAd |d=d=d (3), (6) O

Lemma 5.2.

For a,b not both 0, write a = bq + r. Then ged(a,b) = ged(b, )

Proof
Let d = gcd(a, b)
Let d' = ged(b, 1)

1 d=sa+1tb=s(bg+r)+tb=(sq+t)b+ sr for some s,t € Z
2 Thend |d
3 d=sb+tr=5b+t(a—bg) =ta+ (s—qt)b for some ', t' € Z
4 Thend|d
From (2) and (4), d =d’ O



6 Euclidean GCD Algorithm

Consider the following sequence of divisions:

a = bqgo + 1o 0<ro<b ged(a,b) = ged(b, ro)

b=qrg+m1 0<r <rg ged(b.rg) = ged(ro, 1)

ro = qar1 + T2 0<ry<m ged(ro,m1) = ged(r1,72)
(

rL=q3re + 13 0<r3<mry ged(ri,re) = ged(ra,r3)

Tn—2 = qnTn—1 + 7y 0 < Tn < Tn—1 ng(rn7277ﬂn71) = ng(Tnflvrn)
Tn-1 = Gns1Tn +0 ged(rp_1,7mn) = ged(ry,0) =1y
Note that the sequence rg, 71, 72...7, is strictly decreasing.
Therefore, it will eventually yield 0.
Let r,, be the last non-zero remainder. Now:
T | Tn—1 from the last term
So 7y, | Tp—2 from the term above
Proceeding similarly, r,, | b and r,, | a, so r, is a common divisor of a and b
Let d be an arbitrary common divisor of a,b. Then:
d|(a—bgo) = d|ro
d| (b—ql’f’o) :>d|7’1
d|(ro—gqor1) = d |2

d | (Tn—Q - QnTn—l) =d | Tn

Since an arbitrary common divisor of (a,b) divides r,, r, = gcd(a,b) (Property
5.3)

rn = gecd(a,b) can also be observed by noting the sequence in the right hand
column, which follows from Lemma 5.2.

7 Coprimality

Definition 7.1. Let gcd(a,b) =1

‘= a and b are coprime

= a and b are relatively prime

:= 1 is the only common divisor of a and b

Property 7.1. gcd(a,b) =1 < ra+ sb =1 for some r,s € Z
This follows directly from Theorem 5.1

and are coprime

Proposition 7.1.

a b
ged(a,b) gcd(a,b)

Proof



Let d = gcd(a, b)

d | a = dk = a for some k € Z

d| b= dk' =b for some k' € Z

&=k =¥

Suppose k and &’ have a common divisor, d’

Then k = d'm, k' = d'm’ for some m,m’' € Z

So a = dd'm and b = dd’'m’, which means dd’ is a common divisor of a, b
But d is the greatest common divisor of a,b, so d’ =1

d =1,= k, k' are relatively prime

0~ O Uk Wi

Theorem 7.1. Generalized Fuclid’s Lemma
a|beAged(a,b)=1=alc

Proof
1 ak =bcfor some k € Z Definition 3.1
2 1=ra+ sbfor some r,s € Z Property 7.1
3 c¢=rac+ sbc =rac+ sak = a(rc+sk) (1), (2)
4 alc (3) O

Corollary 7.1.1. Euclid’s Lemma
For any prime, p,p |bc=p|bVp|c

Proof
WLOG, assume p1b
Then ged(p,b) =1 = rp + sb for some r,s € Z
Multiplying by ¢, ¢ = (re)p + (s)be
Since p | (re)pAp | (s)be, p| ¢
The derivation for p | b is analogous O

8 Linear Diophantine Equation

Definition 8.1.

A Linear Diophantine Equation in 2 variables is an equation of the form
ar +by=c

Property 8.1. ax + by = c is solvable < ged(a,b) | ¢

Proof
Let ax + by = ¢ have a solution Premise
Then ged(a,b) | ¢ Corollary 5.1.3

Theorem 8.1. If (xg,40) is a solution of ax + by = ¢,

then all solutions are given by (a:o + mk, Yo — mk)

Proof =



Let d = gcd(a, b)
c=dk Property 8.1
d = ra+ sb for some r,s € Z Theorem 5.1
¢ = a(rk) + b(sk)
So this equation has the solution (zg = rk, yo = sk)
Substituting for arbitrary z, y:
ax + by = a(zo + k) + b(yo — %)
= (azo + byo) + “5¢ — ¥ = (axo + byo) O
Proof <
Let xo,yo) and (z1,y1) be solutions of ax + by = ¢
Then ¢ = axg + byg = ax1 + by
a(z1 —x0) = b(yo — y1)
&y — x0) = &(yo — y1)
ged(, g) = Proposition 7.1
Since g 14, % | (x1 — o)
Hence, 1 — xg = %k for some k € Z
And z1 = xg + %k
a%k = b(yo — 1)
%]f = (Yo — v1)
y1 =y — gk O

Corollary 8.1.1. For ged(a,b) = 1, all solutions of ax 4+ by = 1 are given by
(xo + bk,yo — ak) Yk € Z, where (xg,yo) is one solution.

Substitute 1 for d in Proof above.

9 Congruence

Definition 9.1. If m | (a — b):

=a=b modm

‘= a is congruent to b mod m

= a and b are in the same congruence class



