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1 Axioms

Axiom 1. 1 ∈ N

Axiom 2. ∀x ∈ N, ∃x′, called the successor of x

Axiom 3. 1 is not the successor of any natural number

Axiom 4. x′ = y′ ⇒ x = y

Axiom 5. : Induction Axiom
Let S ⊆ N such that
• (1) 1 ∈ S
• (2) x ∈ S ⇒ x′ ∈ S
Then S = N

Axiom 6. : Well-Ordering Axiom
∀(S ⊆ N ∧ S 6= ∅), S contains a least element.
That is, ∀(b ∈ S), (∃a ∈ S) : a ≤ b

2 Postulates on Z
Postulate 1. Reflexivity of Equality
a ∈ Z⇒ a = a

Postulate 2. Symmetry of Equality
a, b ∈ Z ∧ a = b⇒ b = a

Postulate 3. Transitivity of Equality
a, b, c ∈ Z ∧ a = b ∧ b = c⇒ a = c

Postulate 4. Transitivity of Inequality
a, b, c ∈ Z ∧ a < b ∧ b < c⇒ a < c

Postulate 5. Trichotomy
a, b ∈ Z⇒ Exactly one of the following is true: (1) a < b, (2) a = b or (3) a > b

1



Postulate 6. Binary operations
· Addition Multiplication

Closure (a + b) ∈ Z (ab) ∈ Z
Equality a = b⇒ a + c = b + c a = b⇒ a · c = b · c

Associativity (a + b) + c = a + (b + c) (ab)c = a(bc)
Identity a + 0 = 0 + a = a a · 1 = 1 · a = a

Commutativity a + b = b + a a · b = b · a
Inverse a + (−a) = 0 {1,−1}

Transitivity of Inequality a < b⇔ a + c < b + c a < b⇔ a · |c| < b · |c|
Distributivity a · (b + c) = ab + ac

Z+ is an abelian group and an infinite cyclic group
Z∗ is a commutative monoid

3 Divisibility

Definition 3.1. Let a, b ∈ Z
∃(k ∈ Z) : b = ak ⇒ a | b
:= a divides b
:= a is a divisor of b

Properties.

Property 3.1. 0 is not a divisor of any integer except 0, since ¬∃k 6= 0 : 0·k 6= 0

Property 3.2. a | 0 since 0 = 0 · a

Property 3.3. 1 | a since a = 1 · a

Property 3.4. a | a since a = a · 1

Property 3.5. a | b ∧ b 6= 0⇒ |a| ≤ |b|

Proof
1. b = ak for some k ∈ Z (Definition 3.1)
2. k 6= 0 since b 6= 0 (Premise)
3. |k| ≥ 1 (2)
4. |b| = |ak| = |a| · |k| ≥ |a| · 1 (3, Trans. Ineq.) �

Property 3.6. Closure under multiplication
d | a⇒ d | ab

Proof
1 dk = a (Definition 3.1)
2 dk · b = a · b (Trans. Mult.)
2 d · (kb) = a · b (Assoc. Mult.)
4 d | ab (Definition 3.1) �

Converse is not necessarily true.
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Property 3.7. Transitivity
a | b ∧ b | c⇒ a | c

Proof
1 ak = b for some k (Definition 3.1)
2 b = ak | c (Premise)
3 akk′ = c for some k′ (Definition 3.1)
4 a(kk′) = c (Assoc. Mult.)
5 a | c (Definition 3.1) �

Property 3.8. Equality
a | b⇔ a · c | b · c

a | b⇒ ak = b⇒ (ac)k = bc⇒ ac | bc
ac | bc⇒ ack = bc⇒ ak = b⇒ a | b

Property 3.9. a | b ∧ b | a⇒ |a| = |b|

Proof
a | b, so ak = b for some k ∈ Z
b | a, so bk′ = a for some k′ ∈ Z
akk′ = a⇔ (k,−k) ∈ {(1,−1), (−1, 1)}

4 Common Divisor

Definition 4.1. Let d | a and d | b, d ∈ Z
:= d is a common divisor of a and b

Definition 4.2. A linear combination of a, b ∈ Z is any integer of the form
ra + sb, r, s ∈ Z

Theorem 4.1. Linear Combination
Let (a, b, d, r, s) ∈ Z. Then d | a ∧ d | b⇒ d | (ra + sb)

Proof
d | a Premise
d | b Premise

(1) ∃(e ∈ Z) : a = d · e (Definition 3.1)
(2) ∃(f ∈ Z) : b = d · f (Definition 3.1)
(3) ra + sb = rde + sdf = d(re + sf) (1, 2)
(4) d | (ra + sb) (3), Definition 3.1 �

Note that the converse is not necessarily true.

Corollary 4.1.1. d | a ∧ d | b⇒ d | (a + b)
Set r = 1, s = 1

Corollary 4.1.2. d | a ∧ d | b⇒ d | (a− b)
Set r = 1, s = −1
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Corollary 4.1.3. d | a⇒ d | ra
Set r = 1, s = 0. Also, see (3.6)

Lemma 4.2. For a, b not both 0, there is a least positive linear combination of
a and b.

Proof. WLOG, assume a 6= 0. Let S = {x : x = (r0a + s0b) ∀(r0, s0 ∈ Z)}.
Then a ∈ S for a > 0, r0 = 1 and −a ∈ S for a < 0, r0 = 1. Therefore,
S 6= ∅. �

Lemma 4.3. For a, b not both 0, the least positive linear combination of a and
b is a common divisor of a and b.

Proof
(1) Let d be the least positive linear combination of a and b (Lemma 4.2)
(2) Write a = qd + r, 0 ≤ r < d (Division Algorithm)
(3) r = a− qd = a− q(r0a + s0b) = (1− qr0)a + (−qs0)b (2)
(4) r is also a linear combination of a and b and r ≥ 0 (2,3)
(5) If r > 0 then (1) is contradicted. Therefore, r = 0 (1, 4)
(6) a = qd + 0, Hence a = qd and d | a (2)
(7) Repeat (2)-(6) with b to complete the proof �

5 Greatest Common Divisor

Definition 5.1. For a, b not both 0, there is a greatest common divisor of
a and b

Proof. WLOG, assume a 6= 0. Let S = {x : x | a ∧ x | b}. Then:
Existence 1 ∈ S ⇒ S 6= ∅ (Property 3.3)

Upper bound x ∈ S ⇒ x | a⇒ x ≤ |a| (Property 3.5)
�

Properties.

Property 5.1. For a, b not both 0, gcd(a, b) ≥ 1 since 1 ∈ S

Property 5.2. gcd(a, 0) = a since a | 0 and a | a

Property 5.3. c | a ∧ c | b⇒ c | gcd(a, b).
This follows directly from Theorem 4.1.

Property 5.4. gcd(ac, bc) = c · gcd(a, b)

Proof
Let d = gcd(a, b)
Let d′ = gcd(ac, bc)
(1) Then d | a ∧ d | b from Definition 4.1
(2) And dc | ac ∧ dc | bc from Property 3.8
(3) So dc | d′ from Property 5.3
(4) d = ra + sb for some r and s from (1)
(5) Then dc = rac + sbc (Multiplicative Equality)
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(6) d′ | ac ∧ d′ | bc by Definition 5.1
(7) d′ | (rac + sbc)⇒ d′ | dc from Theorem 4.1, (5)
(8) From (3), dc ≤ d′, and from (7), d′ ≥ dc
(9) Therefore d′ = dc �

Theorem 5.1. Bezout’s Identity
gcd(a, b) is the least positive linear combination of a and b

Proof
Let d be the least positive linear combination of a and b.
Then d | a and d | b from Lemma 4.3
Let c | a and c | b for some c ∈ Z
Since d is a linear combination of a and b, c | d
And c ≤ d from Property 3.5
All common divisors c, of (a, b) are ≤ d⇒ gcd(a, b) = d �

Corollary 5.1.1. c | gcd(a, b)⇔ c | a ∧ c | b

Proof ⇐ is restatement of Property 5.3

Proof ⇒
c | gcd(a, b) by Premise
gcd(a, b) | a by Definition 5.1
c | a by Property 3.7
c | b can be shown by analogous derivation. �

Corollary 5.1.2. ∀k ∈ Z, ∃ (r, s) ∈ Z : k · gcd(a, b) = ra + sb
All multiples of gcd(a, b) are a linear combination of a and b

Proof
gcd(a, b) = r0a + s0b Theorem 5.1
k · gcd(a, b) = (r0k)a + (s0k)b �

Corollary 5.1.3. ∀(a, b, r, s ∈ Z) : gcd(a, b) | (ra + sb)
All linear combinations of a and b are a multiple of gcd(a, b)

Proof
Let g = gcd(a, b)
Let (r, s) ∈ Z be arbitrary integers
k · g = a Definition 5.1
k′ · g = b Definition 5.1
ra + sb = rkg + sk′g = (rk + sk′)g Substituting
g | (ra + sb) �

Corollary 5.1.4. gcd(ac, bc) = c · gcd(a, b)

Proof
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Let d = gcd(a, b)
1 d | a ∧ d | b Definition 4.1
2 dc | ac ∧ dc | bc Property 3.8

Let d′ = gcd(ac, bc)
3 Then dc | d′ (2), Property 5.3
4 d = r0a + s0b Theorem 5.1
5 dc = r0ac + s0bc, which is a linear combination of ac, bc
6 d′ | dc (5), Corollary 5.1.3
7 d′ = dc (3), (6) �

Corollary 5.1.5. gcd(a, bc) |
(
gcd(a, b) · gcd(a, c)

)
Proof
Let gcd(a, b) = r0a + s0b Theorem 5.1
Let gcd(a, c) = r1a + s1c Theorem 5.1
Then (gcd(a, b) · gcd(a, c) = r0ar1a + r0as1c + s0br1a + s0bs1c
= (r0r1a + r0s1c + s0s1b)a + (s0s1)bc
which is a linear combination of a, bc
And which gcd(a, bc) is thus a divisor of by Corollary 5.1.3 �

Corollary 5.1.6. gcd(a + bc) = gcd(a, b) for any c ∈ Z

Proof
Let d = gcd(a, b) and d′ = gcd(a + bc, b)

1 d′ = r(a + bc) + sb = ra + (rc + s)b Definition 4.1
2 d | a ∧ d | b Definition 4.1
3 d | d′ (2), Theorem 4.1
4 d′ | b⇒ d′ | bc Property 3.6
5 d′ | (a + bc) ∧ d′ | bc⇒ d′ | (a + bc− bc)⇒ d′ | a Corollary 4.1.2
6 d′ | a ∧ d′ | b⇒ d′ | d Property 5.3
7 d | d′ ∧ d′ | d⇒ d = d′ (3), (6) �

Lemma 5.2.

For a, b not both 0, write a = bq + r. Then gcd(a, b) = gcd(b, r)

Proof
Let d = gcd(a, b)
Let d′ = gcd(b, r)

1 d = sa + tb = s(bq + r) + tb = (sq + t)b + sr for some s, t ∈ Z
2 Then d′ | d
3 d′ = s′b + t′r = s′b + t′(a− bq) = t′a + (s− qt′)b for some s′, t′ ∈ Z
4 Then d | d′

From (2) and (4), d = d′ �
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6 Euclidean GCD Algorithm

Consider the following sequence of divisions:
a = bq0 + r0 0 ≤ r0 < b gcd(a, b) = gcd(b, r0)
b = q1r0 + r1 0 ≤ r1 < r0 gcd(b.r0) = gcd(r0, r1)
r0 = q2r1 + r2 0 ≤ r2 < r1 gcd(r0, r1) = gcd(r1, r2)
r1 = q3r2 + r3 0 ≤ r3 < r2 gcd(r1, r2) = gcd(r2, r3)
... ... ...
... ... ...
rn−2 = qnrn−1 + rn 0 ≤ rn ≤ rn−1 gcd(rn−2, rn−1) = gcd(rn−1, rn)
rn−1 = qn+1rn + 0 gcd(rn−1, rn) = gcd(rn, 0) = rn

Note that the sequence r0, r1, r2...rn is strictly decreasing.
Therefore, it will eventually yield 0.
Let rn be the last non-zero remainder. Now:
rn | rn−1 from the last term
So rn | rn−2 from the term above
Proceeding similarly, rn | b and rn | a, so rn is a common divisor of a and b
Let d be an arbitrary common divisor of a, b. Then:
d | (a− bq0)⇒ d | r0
d | (b− q1r0)⇒ d | r1
d | (r0 − q2r1)⇒ d | r2
...
d | (rn−2 − qnrn−1)⇒ d | rn
Since an arbitrary common divisor of (a, b) divides rn, rn = gcd(a, b) (Property
5.3)
rn = gcd(a, b) can also be observed by noting the sequence in the right hand
column, which follows from Lemma 5.2.

7 Coprimality

Definition 7.1. Let gcd(a, b) = 1
:= a and b are coprime
:= a and b are relatively prime
:= 1 is the only common divisor of a and b

Property 7.1. gcd(a, b) = 1⇔ ra + sb = 1 for some r, s ∈ Z
This follows directly from Theorem 5.1

Proposition 7.1. a
gcd(a,b) and b

gcd(a,b) are coprime

Proof
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Let d = gcd(a, b)
1 d | a⇒ dk = a for some k ∈ Z
2 d | b⇒ dk′ = b for some k′ ∈ Z
3 a

d = k, b
d = k′ (1), (2)

4 Suppose k and k′ have a common divisor, d′

5 Then k = d′m, k′ = d′m′ for some m,m′ ∈ Z
6 So a = dd′m and b = dd′m′, which means dd′ is a common divisor of a, b
7 But d is the greatest common divisor of a, b, so d′ = 1
8 d′ = 1,⇒ k, k′ are relatively prime (4) �

Theorem 7.1. Generalized Euclid’s Lemma
a | bc ∧ gcd(a, b) = 1⇒ a | c

Proof
1 ak = bc for some k ∈ Z Definition 3.1
2 1 = ra + sb for some r, s ∈ Z Property 7.1
3 c = rac + sbc = rac + sak = a(rc + sk) (1), (2)
4 a | c (3) �

Corollary 7.1.1. Euclid’s Lemma
For any prime, p, p | bc⇒ p | b ∨ p | c

Proof
WLOG, assume p - b
Then gcd(p, b) = 1 = rp + sb for some r, s ∈ Z
Multiplying by c, c = (rc)p + (s)bc
Since p | (rc)p ∧ p | (s)bc, p | c
The derivation for p | b is analogous �

8 Linear Diophantine Equation

Definition 8.1.

A Linear Diophantine Equation in 2 variables is an equation of the form
ax + by = c

Property 8.1. ax + by = c is solvable ⇔ gcd(a, b) | c

Proof
Let ax + by = c have a solution Premise
Then gcd(a, b) | c Corollary 5.1.3

Theorem 8.1. If (x0, y0) is a solution of ax + by = c,
then all solutions are given by

(
x0 + b

gcd(a,b)k, y0 −
a

gcd(a,b)k
)

Proof ⇒
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Let d = gcd(a, b)
c = dk Property 8.1
d = ra + sb for some r, s ∈ Z Theorem 5.1
c = a(rk) + b(sk)
So this equation has the solution (x0 = rk, y0 = sk)
Substituting for arbitrary x, y:
ax + by = a

(
x0 + b

dk
)

+ b
(
y0 − a

dk
)

= (ax0 + by0) + abk
d −

abk
d = (ax0 + by0) �

Proof ⇐
Let x0, y0) and (x1, y1) be solutions of ax + by = c
Then c = ax0 + by0 = ax1 + by1
a(x1 − x0) = b(y0 − y1)
a
d (x1 − x0) = b

d (y0 − y1)
gcd(a

d ,
b
d ) = 1 Proposition 7.1

Since b
d - a

d ,
b
d | (x1 − x0)

Hence, x1 − x0 = b
dk for some k ∈ Z

And x1 = x0 + b
dk

a b
dk = b(y0 − y1)

a
dk = (y0 − y1)
y1 = y0 − a

dk �

Corollary 8.1.1. For gcd(a, b) = 1, all solutions of ax + by = 1 are given by
(x0 + bk, y0 − ak) ∀k ∈ Z, where (x0, y0) is one solution.

Substitute 1 for d in Proof above.

9 Congruence

Definition 9.1. If m | (a− b):
:= a ≡ b mod m
:= a is congruent to b mod m
:= a and b are in the same congruence class
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