2014 Schedule
* 1-Jan *L.Mikael
4-JanFanucci
11-JanKrasner
* 18-Jan *N. Mikael
25-JanEldridge
1-FebKafina
8-FebKrasner
* 15-Feb *Joshi
* 22-Feb *Fanucci
1-MarN. Mikael
8-MarEldridge
15-MarJoshi
22-MarKrasner
29-MarL. Mikael
5-AprN. Mikael
12-AprJoshi
* 19-Apr *Kafina
* 26-Apr *Krasner
3-MayL. Mikael
10-MayN. Mikael
17-MayKafina
* 24-May *Eldridge
31-MayFanucci
7-JunL. Mikael
14-JunJoshi
21-JunKafina
28-JunEldridge
* 4-Jul *L. Mikael
12-JulFanucci
19-JulN. Mikael
26-JulJoshi
2-AugEldridge
9-AugL. Mikael
16-AugKafina
23-AugFanucci
* 30-Aug *N. Mikael
6-SepJoshi
13-SepEldridge
20-SepL. Mikael
27-SepKrasner
4-OctN. Mikael
* 11-Oct *Joshi
18-OctFanucci
25-OctKafina
1-NovKrasner
8-NovEldridge
* 10-Nov *Fanucci
15-NovL. Mikael
22-NovN. Mikael
* 27-Nov *Kafina
* 29-Nov *Krasner
6-DecJoshi
13-DecFanucci
20-DecKafina
* 25-Dec *Eldridge
* 27-Dec *L. Mikael
* 1-Jan *N. Mikael
2015 rotation
starts with Krasner
Who is up first for the year?
hi
012345678910111213
0*31-Dec**30-Dec**31-Dec**1-Jan**1-Jan**1-Jan**1-Jan**31-Dec**30-Dec**31-Dec**1-Jan**1-Jan**1-Jan**1-Jan*
17-Jan6-Jan5-Jan4-Jan3-Jan9-Jan8-Jan7-Jan6-Jan5-Jan4-Jan3-Jan9-Jan8-Jan
2*14-Jan**13-Jan*12-Jan11-Jan10-Jan*16-Jan**15-Jan**14-Jan**13-Jan*12-Jan11-Jan10-Jan*16-Jan**15-Jan*
321-Jan20-Jan*19-Jan**18-Jan**17-Jan*23-Jan22-Jan21-Jan20-Jan*19-Jan**18-Jan**17-Jan*23-Jan22-Jan
428-Jan27-Jan26-Jan25-Jan24-Jan30-Jan29-Jan28-Jan27-Jan26-Jan25-Jan24-Jan30-Jan29-Jan
54-Feb3-Feb2-Feb1-Feb31-Jan6-Feb5-Feb4-Feb3-Feb2-Feb1-Feb31-Jan6-Feb5-Feb
611-Feb10-Feb9-Feb8-Feb7-Feb*13-Feb*12-Feb11-Feb10-Feb9-Feb8-Feb7-Feb*13-Feb*12-Feb
7*18-Feb**17-Feb**16-Feb**15-Feb**14-Feb**20-Feb**19-Feb**18-Jan**17-Feb**16-Feb**15-Feb**14-Feb**20-Feb**19-Feb*
8*25-Feb**24-Feb**23-Feb**22-Feb**21-Feb*27-Feb*26-Feb**25-Jan**24-Feb**23-Feb**22-Feb**21-Feb*27-Feb*26-Feb*
94-Mar3-Mar2-Mar1-Mar28-Feb6-Mar5-Mar3-Mar2-Mar1-Mar29-Feb28-Feb5-Mar4-Mar
1011-Mar10-Mar9-Mar8-Mar7-Mar13-Mar12-Mar10-Mar9-Mar8-Mar7-Mar6-Mar12-Mar11-Mar
1118-Mar17-Mar16-Mar15-Mar14-Mar20-Mar19-Mar17-Mar16-Mar15-Mar14-Mar13-Mar19-Mar18-Mar
1225-Mar24-Mar23-Mar22-Mar21-Mar27-Mar26-Mar24-Mar23-Mar22-Mar21-Mar20-Mar26-Mar25-Mar
131-Apr31-Mar30-Mar29-Mar28-Mar3-Apr2-Apr31-Mar30-Mar29-Mar28-Mar27-Mar2-Apr1-Apr
148-Apr7-Apr6-Apr5-Apr4-Apr10-Apr9-Apr7-Apr6-Apr5-Apr4-Apr3-Apr9-Apr8-Apr
15*15-Apr**14-Apr**13-Apr*12-Apr11-Apr*17-Apr**16-Apr**14-Apr**13-Apr*12-Apr11-Apr10-Apr*16-Apr**15-Apr*
16*22-Apr**21-Apr**20-Apr**19-Apr**18-Apr**24-Apr**23-Apr**21-Apr**20-Apr**19-Apr**18-Apr**17-Apr**23-Apr**22-Apr*
1729-Apr28-Apr27-Apr*26-Apr**25-Apr*1-May30-Apr28-Apr27-Apr*26-Apr**25-Apr**24-Apr*30-Apr29-Apr
186-May5-May4-May3-May2-May8-May7-May5-May4-May3-May2-May1-May7-May6-May
1913-May12-May11-May10-May9-May15-May14-May12-May11-May10-May9-May8-May14-May13-May
2020-May19-May18-May17-May16-May22-May21-May19-May18-May17-May16-May15-May21-May20-May
21*27-May**26-May**25-May**24-May**23-May**29-May**28-May**26-May**25-May**24-May**23-May*22-May*28-May**27-May*
223-Jun2-Jun1-Jun31-May30-May5-Jun4-Jun2-Jun1-Jun31-May30-May*29-May*4-Jun3-Jun
2310-Jun9-Jun8-Jun7-Jun6-Jun12-Jun11-Jun9-Jun8-Jun7-Jun6-Jun5-Jun11-Jun10-Jun
2417-Jun16-Jun15-Jun14-Jun13-Jun19-Jun18-Jun16-Jun15-Jun14-Jun13-Jun12-Jun18-Jun17-Jun
2524-Jun23-Jun22-Jun21-Jun20-Jun26-Jun25-Jun23-Jun22-Jun21-Jun20-Jun19-Jun25-Jun24-Jun
261-Jul30-Jun29-Jun28-Jun27-Jun*3-Jul**2-Jul*30-Jun29-Jun28-Jun29-Jun26-Jun*2-Jul*1-Jul
27*3-Jul**4-Jul**4-Jul**4-Jul**4-Jul*10-Jul9-Jul*4-Jul**4-Jul**4-Jul**4-Jul**3-Jul*9-Jul*3-Jul*
288-Jul7-Jul6-Jul12-Jul11-Jul17-Jul16-Jul7-Jul6-Jul12-Jul11-Jul10-Jul16-Jul8-Jul
2915-Jul14-Jul13-Jul19-Jul18-Jul24-Jul23-Jul14-Jul13-Jul19-Jul18-Jul17-Jul23-Jul15-Jul
3022-Jul21-Jul20-Jul26-Jul25-Jul31-Jul30-Jul21-Jul20-Jul26-Jul25-Jul24-Jul30-Jul22-Jul
3129-Jul28-Jul27-Jul2-Aug1-Aug7-Aug6-Aug28-Jul27-Jul2-Aug1-Aug31-Jul6-Aug29-Jul
325-Aug4-Aug3-Aug9-Aug8-Aug14-Aug13-Aug4-Aug3-Aug9-Aug8-Aug7-Aug13-Aug5-Aug
3312-Aug11-Aug10-Aug16-Aug15-Aug21-Aug20-Aug11-Aug10-Aug16-Aug15-Aug14-Aug20-Aug12-Aug
3419-Aug18-Aug17-Aug23-Aug22-Aug28-Aug27-Aug18-Aug17-Aug23-Aug22-Aug21-Aug27-Aug12-Aug
3526-Aug25-Aug24-Aug*30-Aug*29-Aug*4-Sep**3-Sep*25-Aug24-Aug*30-Aug*29-Aug28-Aug*3-Sep*26-Aug
36*2-Sep**1-Sep**31-Aug*6-Sep*5-Sep*11-Sep10-Sep*1-Sep**31-Aug*6-Sep*5-Sep**4-Sep*10-Sep*2-Sep*
379-Sep8-Sep7-Sep13-Sep12-Sep18-Sep17-Sep8-Sep7-Sep13-Sep12-Sep11-Sep17-Sep9-Sep
3816-Sep15-Sep14-Sep20-Sep19-Sep25-Sep24-Sep15-Sep14-Sep20-Sep19-Sep18-Sep24-Sep16-Sep
3923-Sep22-Sep21-Sep27-Sep26-Sep2-Oct1-Oct22-Sep21-Sep27-Sep26-Sep25-Sep1-Oct23-Sep
4030-Sep29-Sep28-Sep4-Oct3-Oct*9-Oct**8-Oct*29-Sep28-Sep4-Oct3-Oct2-Oct*8-Oct*30-Sep
41*7-Oct**6-Oct*5-Oct*11-Oct**10-Oct*16-Oct15-Oct*6-Oct*5-Oct*11-Oct**10-Oct**9-Oct*15-Oct*7-Oct*
4214-Oct13-Oct*12-Oct*18-Oct17-Oct23-Oct22-Oct13-Oct*12-Oct*18-Oct17-Oct16-Oct22-Oct14-Oct
4321-Oct20-Oct19-Oct25-Oct24-Oct30-Oct29-Oct20-Oct19-Oct25-Oct24-Oct23-Oct29-Oct21-Oct
4428-Oct27-Oct26-Oct1-Nov31-Oct6-Nov5-Nov27-Oct26-Oct1-Nov31-Oct30-Oct5-Nov28-Oct
454-Nov3-Nov2-Nov8-Nov7-Nov*11-Nov**11-Nov*3-Nov2-Nov8-Nov7-Nov6-Nov*11-Nov*4-Nov
46*11-Nov**10-Nov**9-Nov**10-Nov**11-Nov*13-Nov19-Nov*10-Nov**9-Nov**10-Nov**11-Nov**11-Nov*19-Nov*11-Nov*
4718-Nov17-Nov16-Nov15-Nov14-Nov20-Nov*24-Nov*17-Nov16-Nov15-Nov14-Nov13-Nov*24-Nov*18-Nov
48*23-Nov**22-Nov*23-Nov22-Nov21-Nov*25-Nov**26-Nov**22-Nov*23-Nov22-Nov21-Nov20-Nov*26-Nov**23-Nov*
49*25-Nov**24-Nov**28-Nov**27-Nov**26-Nov**27-Nov*3-Dec*24-Nov**28-Nov**27-Nov**26-Nov**25-Nov*3-Dec*25-Nov*
502-Dec1-Dec*30-Nov**29-Nov**28-Nov*4-Dec10-Dec1-Dec*30-Nov**29-Nov**28-Nov**27-Nov*10-Dec2-Dec
519-Dec8-Dec7-Dec6-Dec5-Dec11-Dec17-Dec8-Dec7-Dec6-Dec5-Dec4-Dec17-Dec9-Dec
5216-Dec15-Dec14-Dec13-Dec12-Dec18-Dec*24-Dec*15-Dec14-Dec13-Dec12-Dec11-Dec*24-Dec*16-Dec
53*23-Dec*22-Dec21-Dec20-Dec19-Dec*25-Dec*22-Dec21-Dec20-Dec19-Dec18-Dec *23-Dec*
54*24-Dec**25-Dec**25-Dec**25-Dec**24-Dec**25-Dec**25-Dec**25-Dec**25-Dec*
55*29-Dec**28-Dec**27-Dec**29-Dec**28-Dec**27-Dec*
Contact Info
(For any dweebs looking at this page, it's a Vernam cipher)
65241b0c16532a0244211c070c160d6520214e111d4e0f6d78692415472c0e0048534757176b5c43584410685a554b42544e58624d555d4f43374d4a4c7e65264f3e1043434a167d444541445e431763435057115365425b7f792c0b4c3f4f43434a167d444541435d431764425157115365425b7f79290f5869554b5244196c4d564542425c1665475f0901016a536878370a0244211c070c166120000000000000483c0613451c5322
6a241f001c53290f4e261600025f0108295910014f411e5e7f2c0d154826085f525b5659187a55505d4a0c705e55424f0d1c007c4b6e61304429015f525b5659187a555452430c705c57464f0d1c007c4b6e613b4e28085f525b5659187a555558460c745952454f0d1c007c4b6e613144201d0000494f4619644d4a4b4017734055414b5c524221554c557e2b030c1d48534757176b5c435845186858564341530c52735a5d6679452a0a16191e092e413c194d081c4c65
772c030017070e4e6a3c060b025f0108295910014f411e5e7f2c0d154826085f525b5659187a55505a4b0c755d55454f0d1c007c4b6e61304429015f525b5659187a555752460c74555c424f0d1c007c4b6e613b4e28085f525b5659187a55515d400c705e56434f0d1c007c4b6e613144201d0000494f4619644d4a4b4017734056424059524221554c557e2b030c1d48534757176b5c43584219685d554745530c52735a5d6679572c030017070e044f201d0a2b104e280e0401074100452755
6c241f111b1d4f2541351c0d0a5f0108295910014f411e5e7f210a104a652203141a0c0b1a735d5a5c4b08655f5d455e595e196b490119530e7b606f3d15090743364f43434a167d4445404b584310644553505359745a51474f0d1c007c4b6e61304429015f525b5856117a5554524a0c705853414f0d1c007c4b6e613b4e28085f525b5856117a55515e4a0c765c53464f0d1c007c4b6e613144201d0000494f4619644d4a4b411570405440465c524221554c557e2b030c1d48534757176b5c43584518685d574743530c52735a5d66794c2e0c031b1d0e2e453e1011181c4f2d0216025d001c4773
6b2414453053241c41201b06195f0108295910014f411e5e7f2c0d154826085f525b5659187a55575f400c7d5d54424f0d1c007c4b6e613b4e28085f525b5659187a55575f430c725b5c4b4f0d1c007c4b6e61304429015f525b5a5e187a55565d420c725f56404f0d1c007c4b6e6135403d57455a4a585609734157585e15735e514e111d4e0f6d78690f1c423102171812162e4d321c0f0d1c5326084b1c161b
6d2c010c131d4f2349381406075f0108295910014f411e5e7f2c0d154826085f525b5659187a55505d4a0c725a52404f0d1c007c4b6e61304429015f525b5856117a555058430c745d55444f0d1c007c4b6e613b4e28085f525b5856117a555b524a0c755d554b4f0d1c007c4b6e6135403d57455a4a585609734655525e16725a504e111d4e0f6d7869071e482e0c001e33020f532018060f5d4e370a
6f240a1c523e06054136194f4b3e65790f17525c51632a1c13050210447f4d4d4b4457470060435a464416725f5910014f411e5e7f2b041e447f4d4d454b5e47006b4c5a46431175545910014f411e5e7f210e1651201f5f525b5659187a555b5f420c7c5e52444f0d1c007c4b6e6135403d57455a4a585609734655525e16725a504e111d4e0f6d786928164d2957455a44575f097346505b5e10755c554e111d4e0f6d7869061a4a240809321e0e1d533e1007451c5322
Under the calendar system we use in Western civilization today, there are 14 distinct yearly calendars - one beginning on each weekday for a non-leap year and one beginning on each weekday for a leap year. Because of the Gregorian leap year system in use since 1582, (off by 1/2 second per century), these calendars rotate in a 400-year perpetual cycle. That is, 1613, 2013, 2413, etc., all have the same calendar and each is followed by the same calendar in 1614, 2014, 2414, etc. If you don't cross a century mark (--00), the cycles are 28 years.

So how does this relate to coverage?
Well, it turns out that the number of coverage periods in a year is not the same for each of the 14 calendar types. That number varies from 53 to 56 and depends upon how many "fixed" holidays (Jan 1, Jul 4, Nov 11, Dec 25) fall on Fri/Sat/Sun/Mon vs. Tue/Wed/Thu. There are between 39 and 41 non-premium coverage periods and 14 or 15 premium coverage periods in any given year, which means 5 or 6 non-premium coverage periods and 2 or 3 premium coverage periods per doc. There are 1537 coverage periods in the 28-year cycle (1133 non-premium and 404 premium periods). This is an update from the previous version of this page. I was erroneously considering Veteran's Day to always fall on Monday, when it always falls on November 11 regardless of the day of the week. Since neither 1133 nor 404 are divisible by 7 (coverage docs), neither 28-year premium nor non-premium coverage cycles are syzgial. Looking at the next cycle up, 400 years, there are 21957 coverage periods, (16185 non-premium and 5772 premium periods). Neither of these is divisible by 7, either. Both cycles, therefore, require 2800 years to re-align (least common multiples of [16185, 7], [5772, 7]), which is the time it will take to get back to 2013, calendar/coverage-wise.

Since a 2800-year cycle is probably too long to wait for mathematically-guaranteed equal coverage distribution, another scheme must be implemented. Several possibilities are illustrated on this page. The left-hand table depicts a straight rotation scheme blind to holiday vs. non-holiday periods. Since 6 out of the 14 calendar types have 56 (divisible by 7) coverage periods, this leads to "clumping" of holiday coverage for certain individuals for certain holidays, and does not result in equitable holiday coverage distribution.

The next simplest scheme would be to "uncouple" holiday and non-holiday coverage periods, having each rotate separately. The problem with this scheme is that 8 of the 14 calendar types have 14 holiday periods, and there are blocks of 4 consecutive years which each have that number of holiday periods. Since 14 is divisible by 7, this would result in 1 doc having the same holiday 4 or even 5 years in a row, as portrayed in the center table on the linked page.

A more equitable solution, which is the one currently implemented, is illustrated in the right-hand table. In this scheme, which should be obvious from the table itself, the 1st holiday of the year rotates through the Coverage Group on a 7-year cycle, assuring equitable holiday distribution. The only issues with this scheme are:
(1) In a 28 year cycle, there are only 12 years with a (premium) weekend between Christmas and New Years (Ch+). Obviously, those "extra" weekends cannot be equally apportioned - 5 docs get 2 of them and 2 docs only get 1. This could be solved by starting the next 28 year cycle (in 2041) with a different doc.
(2) Due to the uncoupling of premium and non-premium coverage, in a given year, 1 doc could have 6 non-premium and 3 premium coverage periods (total of 9) and another could have 5 non-premium and 2 premium coverage periods (total of 7). This is a hypothetical but not a real concern. Projecting the schedule out, until the year 2048, the difference in highest and lowest assigned coverage periods is cumulatively only 2. Check it out.
(3) Since the coverages are uncoupled, a doc could have a premium coverage period immediately preceded or succeeded by a non-premium coverage period. This is easily remedied via some minor arbitrary manual adjustments.

Historical Holiday Coverage
*NYMLKPresPre+PatSpr+MemIndLabColVetThkTh+ChrCh+
2003xxDE????????MK??????JKDE??MK??
2004DE??DE??????MK????MKJKDE??JK
2005DE??JK??????????DE??MKKFDEJK
2006DEMMMKMMJKPCKFDEIBMKPCDEMKJK
2007DEDEMKMMJKMMKFJKVJDEDEVJMKMMMK
2008VJMKMKMMJKJKDEVJKFMKJKNMKFJKJK
2009DEJKKFJKJKNMVJJKDENMMKVJDEMK
2010KFVJMKNMKFMKVJKFDENMJKKFDEJK
2011MKLMKFMKNMSGDEKFSGMKVJNMLMJK
2012VJDEVJKFLMNMMKVJKFDEMKLMDEJKSH